offer a safe and energy-dense solution for storing hydrogen, a zero-emission alternative fuel. This research focuses on ammonia borane, NaBH4, n-ethylcarbazole and dibenzyltoluene. Applying hydrogen carriers influences ship design significantly, as they require additional specialised equipment to remove hydrogen from the hydrogen carrier. This research estimates the size of the equipment. As this equipment will need to be stored and maintained on the ship, the exact sizing and sequence of the additional equipment will likely influence ship design. Results show that the reactor size is significant for all hydrogen carriers. The mixing tank is considerably sized for NaBH4 and ammonia borane, while the heat exchangers are large for dibenzyltoluene and n-ethylcarbazole.